A Bayesian Mixed-Effects Model to Learn Trajectories of Changes from Repeated Manifold-Valued Observations
نویسندگان
چکیده
We propose a generic Bayesian mixed-effects model to estimate the temporal progression of a biological phenomenon from observations obtained at multiple time points for a group of individuals. The progression is modeled by continuous trajectories in the space of measurements. Individual trajectories of progression result from spatiotemporal transformations of an average trajectory. These transformations allow for the quantification of changes in direction and pace at which the trajectories are followed. The framework of Riemannian geometry allows the model to be used with any kind of measurements with smooth constraints. A stochastic version of the Expectation-Maximization algorithm is used to produce maximum a posteriori estimates of the parameters. We evaluated our method using a series of neuropsychological test scores from patients with mild cognitive impairments, later diagnosed with Alzheimer’s disease, and simulated evolutions of symmetric positive definite matrices. The data-driven model of impairment of cognitive functions illustrated the variability in the ordering and timing of the decline of these functions in the population. We showed that the estimated spatiotemporal transformations effectively put into correspondence significant events in the progression of individuals.
منابع مشابه
Learning spatiotemporal trajectories from manifold-valued longitudinal data
We propose a Bayesian mixed-effects model to learn typical scenarios of changes from longitudinal manifold-valued data, namely repeated measurements of the same objects or individuals at several points in time. The model allows to estimate a group-average trajectory in the space of measurements. Random variations of this trajectory result from spatiotemporal transformations, which allow changes...
متن کاملStatistical Learning of Spatiotemporal Patterns from Longitudinal Manifold-Valued Networks
We introduce a mixed-effects model to learn spatiotemporal patterns on a network by considering longitudinal measures distributed on a fixed graph. The data come from repeated observations of subjects at different time points which take the form of measurement maps distributed on a graph such as an image or a mesh. The model learns a typical group-average trajectory characterizing the propagati...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملLearning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms
We propose a method to learn a distribution of shape trajectories from longitudinal data, i.e. the collection of individual objects repeatedly observed at multiple time-points. The method allows to compute an average spatiotemporal trajectory of shape changes at the group level, and the individual variations of this trajectory both in terms of geometry and time dynamics. First, we formulate a n...
متن کاملEstimating anatomical trajectories with Bayesian mixed-effects modeling
We introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitudinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In particular, we propose a probabilistic generative model that parameterizes individu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 18 شماره
صفحات -
تاریخ انتشار 2017